Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System
نویسندگان
چکیده
To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input-output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy.
منابع مشابه
Analysis of Transient Flow in the Case of Secondary Injection for Transient Vector Control (RESEARCH NOTE)
The purpose of this paper is to analyze the flow field structure in transient state and performance of secondary injection system for thrust vectoring in divergent section of a two-dimensional nozzle. Secondary injection for thrust vectoring in a two-dimensional nozzle is studied by solving three-dimensional Reynolds-averaged equations by means of fluent solver. Spalart-allmaras model was used ...
متن کاملتحلیل چیدمان انژکتورها و توزیع دبی پاشش در سامانه کنترل بردار تراست به روش پاشش مایع(علمی-پژوهشی)
In this paper, the effect of secondary fluid injection on deviation and control of thrust vector with use of sprayed liquid fluid multi injection in to divergence nozzle flow is studied. Freon fluid as injection fluid have been chosen that more applicable and the fluent software is used for simulation flow field. In this investigation after grid study, different simulations in order to obtain t...
متن کاملInjection Optimization for Heavy Duty Diesel Engine in Order to Find High Efficiency and Low NOx Engine Concept by Means of Quasi Dimensional Multi-Zone Spray Modeling
The purpose of this study is to investigate the effect of injection parameters on a heavy duty diesel engine performance and emission characteristics. In order to analyze the injection and spray characteristics of diesel fuel with employing high-pressure common-rail injection system, the injection characteristics such as injection delay, injection duration, injection rate, number of nozzle hole...
متن کاملEffect of fuel injection discharge curve and injection pressure on upgrading power and combustion parameters in HD diesel engine with CFD simulation
Abstract: In this study, the effect of fuel injection discharge curve and injection pressure simultaneously for upgrading power of heavy duty diesel engine by simulation of combustion process in AVL-Fire software are discussed. Hence, the fuel injection discharge curve was changed from semi-triangular to rectangular which is usual in common rail fuel injection system. Injection pressure with r...
متن کاملInvestigation the effects of injection pressure and compressibility and nozzle entry in diesel injector nozzle’s flow
Investigating nozzle’s orifice flow is challenging both experimentally and theoretically. This paper focuses on simulating flow inside diesel injector nozzle via Ansys fluent v15. Validation is performed with experimental results from Winkhofler et al (2001). Several important parameters such as mass flow rate, velocity profiles and pressure profiles are used for this validation. Results includ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2016